首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4615篇
  免费   452篇
  国内免费   1篇
  2024年   9篇
  2023年   59篇
  2022年   35篇
  2021年   272篇
  2020年   122篇
  2019年   152篇
  2018年   170篇
  2017年   150篇
  2016年   227篇
  2015年   371篇
  2014年   348篇
  2013年   360篇
  2012年   502篇
  2011年   436篇
  2010年   238篇
  2009年   179篇
  2008年   283篇
  2007年   253篇
  2006年   204篇
  2005年   199篇
  2004年   157篇
  2003年   117篇
  2002年   91篇
  2001年   21篇
  2000年   10篇
  1999年   9篇
  1998年   15篇
  1997年   8篇
  1996年   4篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1989年   6篇
  1987年   4篇
  1986年   4篇
  1985年   2篇
  1984年   5篇
  1982年   5篇
  1980年   4篇
  1978年   2篇
  1976年   2篇
  1973年   2篇
  1933年   1篇
  1931年   1篇
  1929年   1篇
  1926年   1篇
  1912年   1篇
  1907年   1篇
排序方式: 共有5068条查询结果,搜索用时 453 毫秒
51.
Global phosphorylation changes in plants in response to environmental stress have been relatively poorly characterized to date. Here we introduce a novel mass spectrometry-based label-free quantitation method that facilitates systematic profiling plant phosphoproteome changes with high efficiency and accuracy. This method employs synthetic peptide libraries tailored specifically as internal standards for complex phosphopeptide samples and accordingly, a local normalization algorithm, LAXIC, which calculates phosphopeptide abundance normalized locally with co-eluting library peptides. Normalization was achieved in a small time frame centered to each phosphopeptide to compensate for the diverse ion suppression effect across retention time. The label-free LAXIC method was further treated with a linear regression function to accurately measure phosphoproteome responses to osmotic stress in Arabidopsis. Among 2027 unique phosphopeptides identified and 1850 quantified phosphopeptides in Arabidopsis samples, 468 regulated phosphopeptides representing 497 phosphosites have shown significant changes. Several known and novel components in the abiotic stress pathway were identified, illustrating the capability of this method to identify critical signaling events among dynamic and complex phosphorylation. Further assessment of those regulated proteins may help shed light on phosphorylation response to osmotic stress in plants.Phosphorylation plays a pivotal role in the regulation of a majority of cellular processes via signaling transduction pathways. During the last decade, quantitative phosphoproteomics has become a powerful and versatile platform to profile signaling pathways at a system-wide scale. Multiple signaling networks in different organisms have been characterized through global phosphorylation profiling (13), which has evolved over the years with highly optimized procedures for sample preparation and phosphopeptide enrichment, high resolution mass spectrometry, and data analysis algorithms to identify and quantify thousands of phosphorylation events (48).Quantitative phosphoproteomics can be achieved mainly by two major techniques, stable isotope labeling and label-free quantitation. Isotope labeling prior to liquid chromatography-mass spectrometry (LC-MS)1 has been widely used, including metabolic labeling such as stable isotope labeling by amino acids in cell culture (SILAC), chemical labeling such as multiplexed isobaric tags for relative and absolute quantification (iTRAQ) and isotope-coded affinity tags (ICAT) (912). On the other hand, label-free quantitation has gained momentum in recent years (1315), as no additional chemistry or sample preparation steps are required. Compared with stable isotope labeling, label-free quantitation has higher compatibility with the source of the samples, the number of samples for comparison, and the instrument choice.Many label-free approaches, in particular to phosphoproteomics, are based on ion intensity (16, 17), but they are relatively error-prone because of run-to-run variations in LC/MS performance (18). In theory, such systematic errors can be corrected by spiking an internal standard into every sample to be compared. Several methods based on internal standard spiking have been reported so far. Absolute quantification peptide technology (AQUA) (19), for example, uses synthetic peptides with isotope labeling for absolute quantitation. For a global quantitative proteomics study, it is unrealistic to spike-in all reference peptides. Another labeling reference method, spike-in SILAC appears to be a promising technique to quantify the proteome in vivo with multiplex capability and it can be extended to clinical samples (20). One solution to large-scale quantitation without any isotope labeling is pseudo internal standard approach (21), which selects endogenous house-keeping proteins as the internal standard so that no spike-in reagent is required. However, finding a good pseudo internal standard remains a challenge for phosphoproteome samples. Spike-in experiments are an alternative way to improve normalization profile. Some internal standard peptides such as MassPREPTM (Waters) were already widely used. Other groups spiked an identical amount of standard protein into samples prior to protein digestion (2224). There are two major normalization procedures. In one approach, sample peptides were normalized to the total peak intensity of spike-in peptides (25). Alternatively, the digested peptides were compared at first and the normalization factor was determined in different ways such as the median (26) or average of ratios (27). However, spiking an identical amount of standard proteins into phosphoproteomic samples before protein digestion may not be compatible with phosphoproteomic analyses which typically require a phosphopeptide enrichment step. Spectral counting has been extensively applied in large sets of proteomic samples because of its simplicity but the method is often not reliable for the quantitation of phosphoproteins, which are typically identified by single phosphopeptides with few spectra (2830). Many software packages have been implemented to support the wide variety of those quantitation techniques, including commercial platforms such as Progenesis LC-MSTM, Mascot DistillerTM, PEAKS QTM, etc., as well as open-source software packages including MaxQuant (31), PEPPeR (32), Skyline (33), etc.In this study, we have devised a novel label-free quantitation strategy termed Library Assisted eXtracted Ion Chromatogram (LAXIC) for plant phosphoproteomic analyses with high accuracy and consistency (Fig. 1). The approach employs synthetic peptide libraries as the internal standard. These peptides were prepared to have proper properties for quality control assessments and mass spectrometric measurements. In particular, peptides were designed to elute sequentially over an entire LC gradient and to have suitable ionization efficiency and m/z values within the normally scanned mass range. Local normalization of peak intensity is performed using Loess Procedure, a data treatment adopted from cDNA microarray data analysis (34). To monitor the diverse ion suppression effect across retention time, the local normalization factors (LNFs) are determined by internal standard pairs in individual time windows. Finally, samples will be quantified with LNFs in order to correct variance of LC-MS conditions. This quantification occurs in a small time frame centered to each target peptide.Open in a separate windowFig. 1.Work flow for the LAXIC strategy to quantify the phosphorylation change in response to osmotic stress. A, Schematic representation of the LAXIC algorithm. First, all the chromatographic peaks were aligned and the ratios were calculated. Second, the normalization factors which equal to ratios of library peptide peaks between MS runs were chosen to construct normalization curve. Third, sample peptide peak ratios were normalized against predicted normalization factor corresponding to certain retention time. B, Schematic representation of quantitative phosphoproteomics. Plants either treated with mannitol or PBS were lysed and mixed proportionally at first. Following peptide digestion and enrichment, phosphopeptides were identified and further quantified through LAXIC incorporated with self-validating process using thelinear regression model to analyze the fold change (fold), linearity (R2) and accuracy (%Acc).Water deficit and salinity causes osmotic stress, which is a major environmental factor limiting plant agricultural productivity. Osmotic stress rapidly changes the metabolism, gene expression and development of plant cells by activating several signaling pathways. Several protein kinases have been characterized as key components in osmotic stress signaling. Arabidopsis histidine kinase AHK1 can complement the histidine kinase mutant yeast, which can act as the osmosensor in yeast (35). Overexpression of AHK1 gene increases the drought tolerance of transgenic plants in Arabidopsis (36). Similar to yeast, the MAPK kinase cascade is also involved in osmotic stress response in plants. It is reported that AtMPK3, AtMPK6, and tobacco SIPK can be activated by NaCl or mannitol, and play positive roles in osmotic signaling (37, 38). MKK7 and MKKK20 may act as the up-stream kinase in the kinase cascade (39). Involvement of some calcium-dependent protein kinases, such as AtCPK21, AtCPK6, and OsCPK7 (CDPK) in osmotic stress signaling has also been reported (4042). Another kinase family, SNF1-related protein kinase (SnRK) 2, also participates in osmotic stress response. In Arabidopsis, there are ten members in the SnRK2 family. Five from the ten SnRK2s, SnRK2, 3, 6, 7, and 8, can be activated by abscisic acid (ABA) and play central roles in ABA-receptor coupled signaling (43, 44). Furthermore, all SnRK2s except SnRK2.9 can be activated by NaCl or mannitol treatment (43). The decuple mutant of SnRK2 showed a strong osmotic hypersensitive phenotype (45). It is proposed that protein kinases including MAPK and SnRK2s have a critical function in osmotic stress (46), but the detailed mechanism and downstream substrates or target signal components are not yet clarified. We applied, therefore, the LAXIC approach with a self-validating method (47) to profile the osmotic stress-dependent phosphoproteome in Arabidopsis by quantifying phosphorylation events before and after mannitol treatment. Among a total of over 2000 phosphopeptides, more than 400 of them are dependent on osmotic stress. Those phosphoproteins are present on enzymes participating in signaling networks that are involved in many processes such as signal transduction, cytoskeleton development, and apoptosis. Overall, LAXIC represents a powerful tool for label-free quantitative phosphoproteomics.  相似文献   
52.
The genetically tractable nematode Caenorhabditis elegans is a convenient host for studies of pathogen infection. With the recent identification of two types of natural intracellular pathogens of C. elegans, this host now provides the opportunity to examine interactions and defence against intracellular pathogens in a whole‐animal model for infection. C. elegans is the natural host for a genus of microsporidia, which comprise a phylum of fungal‐related pathogens of widespread importance for agriculture and medicine. More recently, C. elegans has been shown to be a natural host for viruses related to the Nodaviridae family. Both microsporidian and viral pathogens infect the C. elegans intestine, which is composed of cells that share striking similarities to human intestinal epithelial cells. Because C. elegans nematodes are transparent, these infections provide a unique opportunity to visualize differentiated intestinal cells in vivo during the course of intracellular infection. Together, these two natural pathogens of C. elegans provide powerful systems in which to study microbial pathogenesis and host responses to intracellular infection.  相似文献   
53.
Campylobacter jejuni is the leading cause of human bacterial gastroenteritis worldwide, but source attribution of the organism is difficult. Previously, DNA microarrays were used to investigate isolate source, which suggested a non‐livestock source of infection. In this study we analysed the genome content of 162 clinical, livestock and water and wildlife (WW) associated isolates combined with the previous study. Isolates were grouped by genotypes into nine clusters (C1 to C9). Multilocus sequence typing (MLST) data demonstrated that livestock associated clonal complexes dominated clusters C1–C6. The majority of WW isolates were present in the C9 cluster. Analysis of previously reported genomic variable regions demonstrated that these regions were linked to specific clusters. Two novel variable regions were identified. A six gene multiplex PCR (mPCR) assay, designed to effectively differentiated strains into clusters, was validated with 30 isolates. A further five WW isolates were tested by mPCR and were assigned to the C7‐C9 group of clusters. The predictive mPCR test could be used to indicate if a clinical case has come from domesticated or WW sources. Our findings provide further evidence that WW C. jejuni subtypes show niche adaptation and may be important in causing human infection.  相似文献   
54.
55.
Small RNA cloning and sequencing is uniquely positioned as a genome-wide approach to quantify miRNAs with single-nucleotide resolution. However, significant biases introduced by RNA ligation in current protocols lead to inaccurate miRNA quantification by 1000-fold. Here we report an RNA cloning method that achieves over 95% efficiency for both 5′ and 3′ ligations. It achieves accurate quantification of synthetic miRNAs with less than two-fold deviation from the anticipated value and over a dynamic range of four orders of magnitude. Taken together, this high-efficiency RNA cloning method permits accurate genome-wide miRNA profiling from total RNAs.  相似文献   
56.
Humans have seven APOBEC3 DNA cytosine deaminases. The activity of these enzymes allows them to restrict a variety of retroviruses and retrotransposons, but may also cause pro-mutagenic genomic uracil lesions. During interphase the APOBEC3 proteins have different subcellular localizations: cell-wide, cytoplasmic or nuclear. This implies that only a subset of APOBEC3s have contact with nuclear DNA. However, during mitosis, the nuclear envelope breaks down and cytoplasmic proteins may enter what was formerly a privileged zone. To address the hypothesis that all APOBEC3 proteins have access to genomic DNA, we analyzed the localization of the APOBEC3 proteins during mitosis. We show that APOBEC3A, APOBEC3C and APOBEC3H are excluded from condensed chromosomes, but become cell-wide during telophase. However, APOBEC3B, APOBEC3D, APOBEC3F and APOBEC3G are excluded from chromatin throughout mitosis. After mitosis, APOBEC3B becomes nuclear, and APOBEC3D, APOBEC3F and APOBEC3G become cytoplasmic. Both structural motifs as well as size may be factors in regulating chromatin exclusion. Deaminase activity was not dependent on cell cycle phase. We also analyzed APOBEC3-induced cell cycle perturbations as a measure of each enzyme’s capacity to inflict genomic DNA damage. AID, APOBEC3A and APOBEC3B altered the cell cycle profile, and, unexpectedly, APOBEC3D also caused changes. We conclude that several APOBEC3 family members have access to the nuclear compartment and can impede the cell cycle, most likely through DNA deamination and the ensuing DNA damage response. Such genomic damage may contribute to carcinogenesis, as demonstrated by AID in B cell cancers and, recently, APOBEC3B in breast cancers.  相似文献   
57.
58.

Background

The Centers for Disease Control and Prevention recommends nontargeted opt-out HIV screening in healthcare settings. Cost effectiveness is critical when considering potential screening methods. Our goal was to compare programmatic costs of nontargeted opt-out rapid HIV screening with physician-directed diagnostic rapid HIV testing in an urban emergency department (ED) as part of the Denver ED HIV Opt-Out Trial.

Methods

This was a prospective cohort study nested in a larger quasi-experiment. Over 16 months, nontargeted rapid HIV screening (intervention) and diagnostic rapid HIV testing (control) were alternated in 4-month time blocks. During the intervention phase, patients were offered HIV testing using an opt-out approach during registration; during the control phase, physicians used a diagnostic approach to offer HIV testing to patients. Each method was fully integrated into ED operations. Direct program costs were determined using the perspective of the ED. Time-motion methodology was used to estimate personnel activity costs. Costs per patient newly-diagnosed with HIV infection by intervention phase, and incremental cost effectiveness ratios were calculated.

Results

During the intervention phase, 28,043 eligible patients were included, 6,933 (25%) completed testing, and 15 (0.2%, 95% CI: 0.1%–0.4%) were newly-diagnosed with HIV infection. During the control phase, 29,925 eligible patients were included, 243 (0.8%) completed testing, and 4 (1.7%, 95% CI: 0.4%–4.2%) were newly-diagnosed with HIV infection. Total annualized costs for nontargeted screening were $148,997, whereas total annualized costs for diagnostic HIV testing were $31,355. The average costs per HIV diagnosis were $9,932 and $7,839, respectively. Nontargeted HIV screening identified 11 more HIV infections at an incremental cost of $10,693 per additional infection.

Conclusions

Compared to diagnostic testing, nontargeted HIV screening was more costly but identified more HIV infections. More effective and less costly testing strategies may be required to improve the identification of patients with undiagnosed HIV infection in the ED.  相似文献   
59.
This work presents a new clock reaction based on ozone, iodine, and chlorate that differs from the known chlorate-iodine clock reaction because it does not require UV light. The induction period for this new clock reaction depends inversely on the initial concentrations of ozone, chlorate, and perchloric acid but is independent of the initial iodine concentration. The proposed mechanism considers the reaction of ozone and iodide to form HOI, which is a key species for producing non-linear autocatalytic behavior. The novelty of this system lies in the presence of ozone, whose participation has never been observed in complex systems such as clock or oscillating reactions. Thus, the autocatalysis demonstrated in this new clock reaction should open the possibility for a new family of oscillating reactions.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号